Humanity’s appetite for energy continues to grow unabated. Estimates suggest that we’ll consume 50% more energy by 2050 than we do today. The combustion of fossil fuels constitutes nearly a third of this increase. As a major contributor to greenhouse gases, this growing demand for energy is changing our climate in unpredictable and dangerous ways.
Progress has been made in the transition to renewable energy, such as with solar and wind power. But these can’t address the high-energy density requirements for heavy transportation, such as aviation, commercial trucking, rail, and marine shipping. Liquid fuels will remain the predominant energy source for these industries for the foreseeable future.
With no viable solution for decarbonizing these industries, finding a sustainable path forward is critical to meeting climate-change mitigation goals. The dilemma is how to slow and ultimately halt rising atmospheric temperatures and air pollution while at the same time meeting the energy needs of a growing global population.
We believe that high-energy density algae biofuel for heavy transportation is part of the answer. By establishing this non-resource intensive, breakthrough solution deployed at a global scale, we can recalibrate heavy transportation toward a more sustainable future and reduce greenhouse gas emissions by nearly 70%.
In partnership with ExxonMobil and others, we are developing an agronomic platform to produce algal biofuels, working with the world’s largest energy producers and users to deploy it at scale. By capitalizing on well-established regulatory programs that incentivize adoption, such as the RFS and LCFS in the US, and the Renewable Energy Directive in Europe, we can make the adoption of algal biofuels more attractive and establish a more level playing field.
This is where the advantages of microalgae kick in. Microalgae are excellent at converting CO2 and sunlight into oil-rich biomass, especially when compared to land-based crop plants like oil palm and soy. By adapting microalgae to function as cell factories producing energy-dense oils that can easily be refined into renewable diesel and jet fuel, we can reduce greenhouse gas emissions by 70%.
We utilize sunlight and atmospheric CO2 to grow the algae for oil as a replacement for burning fossil fuels (which release new carbon previously stored underground). Additionally, by farming in saltwater on marginal land, we avoid competing with resources required for food production, such as arable farmland and freshwater. We estimate that at commercialization, the productivity of engineered microalgae will be 20x times greater than any existing terrestrial crop. This dramatic advantage underpins the scalability of our technology.
One of the main challenges in pushing productivity levels in microalgae is the inverse relationship between biomass growth and oil output. Our 2015 discovery of the “lipid switch” in microalgae (published in 2017) that enables both the growth and production of lipids was a seminal breakthrough. With further advancements in genome sequencing, bioinformatics, and precise gene-editing technologies, we are improving microalgae’s oil productivity even further.
As we move our achievements in the lab to CAAF, our outdoor pilot production facility in the California desert, we are using our microbiology expertise to address the challenges of a real-world production setting. Much like a farmer, we need to manage much more than just our crop. This includes pests, weeds, predators, beneficial bacteria, etc., all of which contribute to the success or failure of the production process. Additionally, we continue to push our analytics, bioinformatics, and strain development teams to match the right strain of microalgae with the right conditions.
Viridos’ vision is to lower the cost of algae biofuels through higher oil productivity and advanced agronomy. As we move closer to commercialization, we are developing the systems and processes that will enable our partners to deploy desert-based farms thousands of acres in size. This will be the tipping point at which algae biofuel becomes an essential, scalable, and cost-competitive tool to mitigate climate change.
Viridos’ algal biofuel delivers a 70% reduction in GHG emissions over the fossil fuels it displaces. And sourcing renewable energy for the operations lowers the carbon footprint of algal biofuels even further.
Viridos’ algal strains are grown in brackish or salinated water, minimizing the need for freshwater. Avoiding competition for valuable freshwater resources reinforces the sustainability of the algal biofuel production process.
Arable land in desirable climates with adequate water supply is increasingly scarce. Viridos’ deployment partners will farm microalgae without the use of freshwater in desert locations preserving valuable land for food production, reinforcing global food security.
The acreage required for growing microalgae is less than a tenth of that needed for other crops used for biofuels, such as corn, palm, and soy, making the scalability of producing biofuel more viable.
Our algae are natural strains that we genetically engineer to enhance biomass and lipid productivity. We use cutting-edge science to select and develop the strains and then carefully monitor how they fit in the natural ecosystem, ensuring ecological harmony.
By creating a "drop-in" algal biofuel that is not subject to blend walls, we create greater adoption with a product that can be deployed without high conversion costs while dramatically reducing carbon emissions.
Crude oil is a complicated mixture of hydrocarbons with varying composition, heavy metal, and sulfur impurities that require extensive refining. Our microalgae produce clean plant oils that can be easily converted to fuel without extensive processing.
Heavy transportation requires diesel or jet fuel which is only a small fraction of the composition of crude oil. Our algae oil is predominantly comprised of carbon chain lengths that can be converted with minimal undesirable refining byproducts into the desired drop-in jet or diesel fuel.
In addition to oils, farming microalgae also produces protein and carbohydrate co-products. Capturing and converting these valuable outputs enables us to minimize waste, seed other sustainable business opportunities, and generate additional revenue.
When Direct Air Capture (DAC) becomes available, it can be used as feedstock for growing Viridos microalgae. This can enhance the viability of DAC, especially as initial units may not have concentrations to enable efficient underground sequestration, whereas Viridos microalgae thrives on lower CO2 concentrations.
With the support of ExxonMobil, Viridos developed the California Advanced Algal Facility (CAAF) in the Imperial Desert in 2018 as the initial pilot facility to test and farm optimal algae strains to move us toward commercialization.
CAAF represents the harshest and most realistic outdoor testbed/pilot environment where strains created by our scientists in the La Jolla lab are fully tested. Our evaluation work at CAAF informs upstream scientists how strains should be engineered, as well as identifies traits, pathways, and improvements that would not otherwise be identified with strains tested in a laboratory setting. This testing also provides an opportunity to inform the cultivators and system’s engineers on how best to design production systems and operations to transition lab productivity to the field at an ever-increasing scale.
With deep-rooted genomic and algal optimization expertise, intellectual property, and the ability to translate innovation from the lab to real-world production settings, we have opportunities that complement our core algae biofuels.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |